Morita Equivalence in Algebra and Geometry

نویسنده

  • RALF MEYER
چکیده

We study the notion of Morita equivalence in various categories. We start with Morita equivalence and Morita duality in pure algebra. Then we consider strong Morita equivalence for C-algebras and Morita equivalence for W-algebras. Finally, we look at the corresponding notions for groupoids (with structure) and Poisson manifolds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gorenstein global dimensions for Hopf algebra actions

Let $H$ be a Hopf algebra and $A$ an $H$-bimodule algebra‎. ‎In this paper‎, ‎we investigate Gorenstein global dimensions for Hopf‎ ‎algebras and twisted smash product algebras $Astar H$‎. ‎Results from‎ ‎the literature are generalized‎. 

متن کامل

ON THE USE OF KULSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY

Since 2005 a new powerful invariant of an algebra has emerged using the earlier work of Horvath, Hethelyi, Kulshammer and Murray. The authors studied Morita invariance of a sequence of ideals of the center of a nite dimensional algebra over a eld of nite characteristic. It was shown that the sequence of ideals is actually a derived invariant, and most recently a slightly modied version o...

متن کامل

On Morita equivalence for simple Generalized Weyl algebras

We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how f...

متن کامل

Noncommutative geometry of algebraic curves

We use C-algebras to study complex algebraic curves. Our approach is based on the representation of an algebraic curve of genus g by the interval exchange transformation due to H. Masur, W. Veech et al. We study the C-algebra Oλ connected to such transformation. The main result says that the algebra Oλ, taken up to Morita equivalence, defines the curve C, up to conformal equivalence. The first ...

متن کامل

Strong Morita Equivalence of Inverse Semigroups

We introduce strong Morita equivalence for inverse semigroups. This notion encompasses Mark Lawson’s concept of enlargement. Strongly Morita equivalent inverse semigroups have Morita equivalent universal groupoids in the sense of Paterson and hence strongly Morita equivalent universal and reduced C∗-algebras. As a consequence we obtain a new proof of a result of Khoshkam and Skandalis showing t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997